lunes, 8 de septiembre de 2008


Magnitudes y unidades El valor de una magnitud se expresa generalmente como el producto de un número por una unidad. La unidad no es más que un valor particular de la magnitud considerada, tomada como referencia, y el número es el cociente entre el valor de la magnitud considerada y la unidad. Para una magnitud concreta, se pueden utilizar numerosas unidades diferentes. Por ejemplo, la velocidad v de una partícula puede expresarse de la forma v = 25 m/s = 90 km/h, donde metro por segundo y kilómetro por hora son unidades alternativas para expresar el mismo valor de la magnitud velocidad. Sin embargo, debido a la importancia de contar con un conjunto de unidades bien definidas y de fácil acceso, que sean reconocidas universalmente para la multitud de medidas que conforman la compleja sociedad de hoy en día, las unidades deben elegirse de forma que sean accesibles a todo el mundo, constantes en el tiempo y el espacio, y fáciles de realizar con gran exactitud. Los términos magnitud y unidad se definen en el Vocabulario Internacional de Términos Fundamentales y Generales de Metrología (VIM). La magnitud velocidad v, puede expresarse en función de las magnitudes distancia, x, y tiempo, t, por medio de la ecuación v = dx/dt. En la mayor parte de los sistemas de magnitudes y de unidades, la distancia x y el tiempo t se consideran magnitudes básicas, para las cuales se pueden elegir como unidades básicas el metro, m, y el segundo, s. La velocidad v se considera entonces magnitud derivada, con la unidad derivada metro por segundo, m/s. Por ejemplo, en electroquímica, la movilidad eléctrica de un ión, u, se define como la relación entre su velocidad v y la intensidad del campo eléctrico E: u = v /E. La unidad de movilidad eléctrica viene dada como: (m/s)/(V/m) = m2 V−1 s−1 en unidades que pueden referirse fácilmente a las unidades básicas escogidas (V es el símbolo del volt, unidad derivada del SI). Para establecer un sistema de unidades, tal como el Sistema Internacional de Unidades, el SI, es necesario en primer lugar establecer un sistema de magnitudes, que incluya una serie de ecuaciones que definan las relaciones entre estas magnitudes. Esto es necesario porque las ecuaciones que relacionan las magnitudes entre sí, determinan las relaciones entre sus unidades, como se describe más adelante. Es conveniente también elegir las definiciones de un pequeño número de unidades, a las que llamaremos unidades básicas, y entonces definir las unidades de todas las demás magnitudes, que llamamos unidades derivadas, como producto de potencias de las unidades básicas. De forma similar, las magnitudes correspondientes se denominan magnitudes básicas y magnitudes derivadas y las ecuaciones que expresan las magnitudes derivadas en función de las magnitudes básicas se emplean para expresar las unidades derivadas en función de las unidades básicas (véase 1.4). Así en un desarrollo lógico de la materia, la elección de las magnitudes y de las ecuaciones que relacionan las magnitudes precede a la elección de las unidades. Desde el punto de vista científico, la división de las magnitudes en básicas y derivadas es convencional y no es fundamental para la comprensión de la física subyacente. Sin embargo, para las unidades correspondientes, es importante que la definición de cada unidad básica se haga con especial cuidado, a fin de satisfacer los requisitos mencionados en el primer párrafo, de proporcionar la base para todo el sistema de unidades.




Unidades SI básicas
Las definiciones oficiales de todas las unidades básicas del SI son aprobadas por la CGPM. La primera de estas definiciones fue aprobada en 1889 y la más reciente en 1983. Estas definiciones se modifican de cuando en cuando, según avanza la ciencia.



2.1.1.1 Unidad de longitud (metro)
La definición del metro de 1889 basada en el prototipo internacional de platino iridiado fue reemplazada durante la 11ª CGPM (1960) por una definición basada en la longitud de onda de una radiación del krypton 86. Se adoptó este cambio para mejorar la exactitud con la que se podía realizar la definición del metro; esta realización se efectuaba mediante un interferómetro y un microscopio móvil utilizado para medir la diferencia de camino óptico por conteo de franjas. A su vez, en 1983, esta definición fue reemplazada por la 17ª CGPM (1983, Resolución 1, CR, 97, y Metrologia, 1984, 20, 25) que estableció la definición actual:
El metro es la longitud de la trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.
De aquí resulta que la velocidad de la luz en el vacío es igual a 299 792 458 metros por segundo exactamente, c0 = 299 792 458 m/s.
El prototipo internacional del metro original, que se aprobó en la 1ª CGPM en 1889 (CR, 34-38), sigue conservándose en el BIPM, en las condiciones establecidas en 1889.
2.1.1.2 Unidad de masa (kilogramo)
El prototipo internacional del kilogramo, un patrón materializado fabricado en platino iridiado, se conserva en el BIPM en las condiciones establecidas por la 1ª CGPM en 1889 (CR, 34-38) que aprobó este prototipo y declaró:
Este prototipo será considerado en lo sucesivo como unidad de masa.
La 3ª CGPM (1901, CR, 70), en una declaración tendente a eliminar la ambigüedad que se presentaba en el uso corriente del término “peso”, confirmó que:









El kilogramo es la unidad de masa; es igual a la masa del prototipo internacional del kilogramo.
La declaración completa figura en la p. 53.
De aquí resulta que la masa del prototipo internacional del kilogramo es siempre igual a 1 kilogramo exactamente, m (K ) = 1 kg. Sin embargo, debido a la inevitable acumulación de partículas sobre sus superficies, el prototipo internacional está sujeto a una contaminación superficial reversible del orden de 1 μg de masa por año. Por ello el CIPM ha declarado que, dependiendo de posteriores investigaciones, la masa de referencia del prototipo internacional es la que posee inmediatamente después de una limpieza y lavado según un método específico (PV, 1989, 57, 104-105 y PV, 1990, 58, 95-97). La masa de referencia así definida se emplea para calibrar los patrones nacionales de platino iridiado (Metrologia, 1994, 31, 317-336).

2.1.1.3 Unidad de tiempo (segundo)
El segundo, unidad de tiempo, se definió originalmente como la fracción 1/86 400 del día solar medio. La definición exacta del “día solar medio” se dejó a los astrónomos. Sin embargo, las observaciones demostraron que esta definición no era satisfactoria por culpa de las irregularidades de la rotación de la Tierra. Para conseguir una definición más precisa de la unidad de tiempo, la 11ª CGPM (1960, Resolución 9; CR, 86) aprobó una definición, proporcionada por la Unión Astronómica Internacional, que se basaba en el año trópico 1900. Sin embargo, las investigaciones experimentales habían demostrado ya que un patrón atómico de tiempo, basado en una transición entre temperatura termodinámica del siguiente modo (1967/68, Resolución 4; CR, 104 y Metrologia, 1968, 4, 43):

El kelvin, unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua. De aquí resulta que la temperatura termodinámica del punto triple del agua es igual a 273,16 kelvin exactamente, Ttpw = 273,16 K. El símbolo Ttpw, se emplea para designar la temperatura termodinámica del punto triple del agua. En su reunión de 2005 el CIPM afirmó que: Esta definición se refiere a un agua de una composición isotópica definida por las siguientes relaciones de cantidad de sustancia: 0,000 155 76 moles de 2H por mol de 1H, 0,000 379 9 moles de 17O por mol de 16O y 0,002 005 2 moles de 18O por mol de 16O. Debido a la forma en que habitualmente se definían las escalas de temperatura, la temperatura termodinámica, símbolo T, continuó expresándose en función de su diferencia respecto a la temperatura de referencia T0 = 273,15 K, punto de congelación del agua. Esta diferencia de temperatura se denomina temperatura Celsius, símbolo t y se define mediante la ecuación entre magnitudes: t = T − T0. La unidad de temperatura Celsius es el grado Celsius, símbolo oC, cuya magnitud es igual por definición a la del kelvin.


Una diferencia o un intervalo de temperatura puede expresarse tanto en kelvin como en grados Celsius (13ª CGPM, 1967/68, Resolución 3, mencionada a continuación), teniendo la diferencia de temperaturas el mismo el valor numérico. Sin embargo, el valor numérico de la temperatura Celsius expresado en grados Celsius se encuentra ligado al valor numérico de la temperatura termodinámica expresada en kelvin por la relación t/oC = T/K − 273,15. El kelvin y el grado Celsius son también las unidades de la Escala Internacional de Temperatura de 1990 (EIT-90) adoptada por el CIPM en 1989 en su Recomendación 5 (CI-1989; PV, 57, 26 y Metrologia, 1990, 27, 13).
2.1.1.6 Unidad de cantidad de sustancia (mol) Tras el descubrimiento de las leyes fundamentales de la química, se usaban unidades denominadas por ejemplo “átomo-gramo” y “molécula-gramo” para especificar las cantidades de elementos y compuestos químicos. Estas unidades estaban directamente ligadas a los “pesos atómicos” y a los “pesos moleculares” que en realidad son masas relativas. Los “pesos atómicos” fueron referidos en principio al peso atómico del elemento químico oxígeno, tomado por convenio igual a 16. Pero cuando los físicos separaron los isótopos en el espectrómetro de masas y atribuyeron el valor 16 a uno de los isótopos del oxígeno, los químicos atribuyeron el mismo valor a la mezcla (de composición ligeramente variable) de los isótopos 16, 17 y 18 que constituyen el elemento oxígeno natural. Un acuerdo entre la Unión Internacional de Física Pura y Aplicada (IUPAP) y la Unión Internacional de Química Pura y Aplicada (IUPAC) puso fin a esta dualidad en 1959/60. Desde entonces, físicos y químicos han convenido en atribuir el valor 12, exactamente, al llamado “peso atómico” del isótopo 12 del carbono (carbono 12, 12C), llamado correctamente masa atómica relativa Ar(12C). La escala unificada así obtenida proporciona los valores de las masas atómicas y moleculares relativas, también conocidas como pesos atómicos y moleculares, respectivamente.

La magnitud utilizada por los químicos para especificar la cantidad de elementos o de compuestos químicos se denomina “cantidad de sustancia”. La cantidad de sustancia se define como proporcional al número de entidades elementales especificadas de una muestra, siendo la constante de proporcionalidad una constante universal idéntica para todas las muestras. La unidad de cantidad de sustancia se denomina mol, símbolo mol y el mol se define fijando la masa de carbono 12 que constituye un mol de átomos de carbono 12. Por acuerdo internacional, esta masa se ha fijado en 0,012 kg, o sea 12 g.
Siguiendo las propuestas de la IUPAP, la IUPAC y la ISO, el CIPM dio en 1967, y confirmó en 1969, una definición del mol que fue adoptada finalmente por la 14ª CGPM (1971, Resolución 3; CR, 78 y Metrologia, 1972, 8, 36):
1. El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12; su símbolo es “mol”.
2. Cuando se emplee el mol, deben especificarse las entidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.
De aquí resulta que la masa molar del carbono 12 es igual a 12 g por mol, exactamente, M(12C) = 12 g/mol.
En 1980, el CIPM aprobó el informe del CCU (1980) que precisaba:
En esta definición se entiende que se refiere a átomos de carbono 12 no ligados, en reposo y en su estado fundamental.
La definición del mol permite también determinar el valor de la constante universal que liga el número de entidades a la cantidad de sustancia de una muestra. Esta constante se denomina constante de Avogadro, símbolo NA o L. Si N(X) designa al número de entidades X de una muestra dada y si n(X) designa la cantidad de sustancia de entidades X de la misma muestra, se tiene la relación:
n(X) = N(X)/NA.
Obsérvese que, dado que N(X) es adimensional y n(X) se expresa mediante la unidad SI mol, la constante de Avogadro tiene como unidad SI coherente el mol elevado a la potencia menos uno.
En el nombre “cantidad de sustancia”, las palabras “de sustancia” podrían reemplazarse por otras palabras que especificasen la sustancia o materia en cuestión para cada aplicación particular; así por ejemplo se podría decir “cantidad de ácido clorhídrico, ClH” o “cantidad de benceno, C6H6”. Es importante precisar la entidad en cuestión (como recomienda el segundo párrafo de la definición del mol), preferentemente indicando la fórmula química empírica del material en cuestión. Aunque la palabra “cantidad” tiene una definición más general en el diccionario, dicha abreviatura del nombre completo “cantidad de sustancia” se usa a veces por brevedad. Ello se aplica también a las magnitudes derivadas como la “concentración de cantidad de sustancia”, que puede denominarse simplemente “concentración de cantidad”. Sin embargo, en el campo de la química clínica, el nombre “concentración de cantidad de sustancia” se abrevia generalmente como “concentración de sustancia”.
2.1.1.7 Unidad de intensidad luminosa (candela)
Las unidades de intensidad luminosa basadas en patrones de llama o de filamento incandescente, que estuvieron en uso en diferentes países antes de 1948, fueron sustituidos por la “nueva candela” basada en la luminancia del emisor de radiación de Planck (cuerpo negro) a la temperatura de congelación del platino. Esta modificación se había preparado por la Comisión Internacional de Iluminación (CIE) y por el Comité Internacional antes de 1937; la decisión fue promulgada por el CIPM en 1946. Fue ratificada en 1948 por la 9ª CGPM que adoptó para esta unidad un nuevo nombre internacional, la candela, símbolo cd; en 1967, la 13ª CGPM (Resolución 5, CR, 104 y Metrologia, 1968, 4, 43-44) hizo una enmienda a esta definición.





En 1979, debido a las dificultades experimentales para realizar un emisor de radiación de Planck a altas temperaturas y a las nuevas posibilidades ofrecidas por la radiometría, es decir, la medida de la potencia de la radiación óptica, la 16ª CGPM (1979, Resolución 3; CR, 100 y Metrologia, 1980, 16, 56) adoptó una nueva definición de la candela:
La candela es la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 × 1012 hertz y cuya intensidad energética en dicha dirección de 1/683 watt por estereorradián.
De aquí resulta que la eficacia luminosa espectral de una radiación monocromática de frecuencia igual a 540 × 1012 hertz es igual a 683 lúmenes por watt, exactamente, K = 683 lm/W = 683 cd sr/W.
2.1.2 Símbolos para las siete unidades básicas
Las unidades básicas del Sistema Internacional se recogen en la Tabla 1, que relaciona las magnitudes básicas con los nombres y símbolos de las siete unidades básicas: 10ª CGPM (1954, Resolución 6; CR, 80); 11ª CGPM (1960, Resolución 12; CR, 87); 13ª CGPM (1967/68, Resolución 3; CR, 104 y Metrologia, 1968, 4, 43); 14ª CGPM (1971, Resolución 3; CR, 78 y Metrologia, 1972, 8, 36)).





Tabla 1. Unidades básicas del SI

Magnitudes básicas Unidades SI básicas

Nombre Símbolo Nombre Símbolo



Longitud l, x, r, etc. metro m

masa m kilogramo kg

tiempo duración t segundo s

corriente eléctrica I, i ampère A

temperatura termodinámica T kelvin K

cantidad de sustancia n mol mol


Intensidad luminosa candela cd


Unidades SI derivadas


Las unidades derivadas se forman a partir de productos de potencias de unidades básicas. Las unidades derivadas coherentes son productos de potencias de unidades básicas en las que no interviene ningún factor numérico más que el 1. Las unidades básicas y las unidades derivadas coherentes del SI forman un conjunto coherente, denominado conjunto de unidades SI coherentes


Unidades derivadas expresadas en función de unidades básicas
El número de magnitudes utilizadas en el campo científico no tiene límite; por tanto no es posible establecer una lista completa de magnitudes y unidades derivadas. Sin embargo, la Tabla 2 presenta algunos ejemplos de magnitudes derivadas y las unidades derivadas coherentes correspondientes, expresadas directamente en función de las unidades básicas.


















































No hay comentarios: